Towards Improved Cloud Phase Retrievals Using Both MODIS and AIRS

Shaima L. Nasiri

Brian H. Kahn

Motivation

- Retrieval of thermodynamic phase is important for:
 - 1. Understanding how ice and water are distributed in the atmosphere
 - Horizontal, vertical, and temporal distribution
 - Comparison to climate and regional scale models
 - 2. Further retrieval of cloud properties such as particle size and optical thickness

In a Perfect World

Cloud Top Temperature from MODIS

Zonally averaged (both hemispheres) MODIS Level 3 CTT, Jan. 2005

Shaima Nasiri, Texas A&M University, snasiri@tamu.edu

April 2008, AIRS Science Team Meeting

Reality - the cartoon version

Clouds between 250 and 265 K do exist and can be composed of:

- •ice crystals
- supercooled water droplets
- •a mixture of ice and water

Application to MODIS Data

- MODIS IR phase algorithm is bispectral
 - $8.5 11 \mu m$, $11 \mu m$ brightness temp.
- Phase classes are:
 - Water
 - Ice
 - Mixed and Unknown

Theory of Spectral Phase Discrimination

Application to MODIS Data (January 2005)

Near-global areaweighted averages

water: 51.5%

ice: 25.5%

unknown: 14.4%

mixed: 8.5%

Cloud Top Temperature and Cloud Phase

Strong relationship between retrieved cloud phase (IR) and retrieved cloud top temperature from MODIS.

for 255 ≤ CTT ≤ 265 K 47% water 3% ice 9% mixed 40% unknown

Near global MODIS Level 3 CTT and IR cloud phase, Jan. 2005

Radiative transfer simulations Midlatitude winter profile

- $T_{sfc} = 272.15 \text{ K}, \epsilon_{sfc} = 1$
- Ice crystal sizes (r_e):
 - MODIS: 7, 20, 25, and 40 μm
- Radiative transfer model
 - MODIS: DISORT

- Water drop sizes (r_e):
- MODIS: 8, 10, 16 µm

MODIS: High Ice, Low Water

Standard Simulations

Dashed lines for ice clouds Solid lines for water clouds

Midlevel Clouds

Dashed lines for ice clouds Solid lines for water clouds

Potentially Mixed-Phase Simulations

MODIS simulations: Optical Thickness

MODIS simulations: Optical Thickness

MODIS simulations: Cloud Height

Can We Do Better?

- The variation of the index of refraction of water and ice over the IR window is still intriguing
- Perhaps MODIS bandwidth too broad to take advantage (recall radiance sensitivity to atmospheric emission)
- What about AIRS?

AIRS Simulations

- Same atmospheric profiles (MLW and MLS) and cloud levels as MODIS simulations
- RT calculations using CHARTS
- Different assumptions regarding ice crystal single scattering properties, but simulations are for a similar range of crystal sizes
- Entire AIRS spectrum modeled; results are shown for a few channels
- Channels chosen for low absorption and a range of values of index of refraction

Radiative transfer simulations Midlatitude winter profile

- $T_{sfc} = 272.15 \text{ K}, \epsilon_{sfc} = 1$
- lce crystal sizes (r_e):
 - MODIS: 7, 20, 25, and 40 μm
 - AIRS: 4, 6, 13, 22, 36, and 46 μm
- Radiative transfer model
 - MODIS: DISORT
 - AIRS: CHARTS

- Water drop sizes (r_e):
- MODIS: 8, 10, 16 μm
- AIRS: 8 µm
- Particle size and crystal habit distribution assumptions are different for each instrument

AIRS simulations show phase separation for "easy" and "hard" cases

"Midlevel' ice and water

Water cloud curves are solid, ice cloud curves are dashed or dotted.

$$T \text{ at } 9 \text{ km} = 226 \text{ K}$$

$$T \, at \, 7 \, km = 238 \, K$$

$$T \text{ at } 3 \text{ km} = 262 \text{ K}$$

$$T \text{ at } 2 \text{ km} = 265 \text{ K}$$

$$T \text{ at } 1 \text{ km} = 269 \text{ K}$$

$$T \text{ at } 5 \text{ km} = 250 \text{ K}$$

$$T \text{ at } 4 \text{ km} = 256 \text{ K}$$

$$T \text{ at } 3 \text{ km} = 262 \text{ K}$$

AIRS simulations show phase separation for "easy" and "hard" cases

Phase Discrimination: Optical Thickness

only overlap is for thin ice and water low optical thickness

Much better phase separation

Phase Discrimination: Cloud Height

less sensitivity to cloud height than MODIS

"Midlevel" Clouds 250 - 265 K

- Clouds with retrieved cloud top temperature between 250 and 265 are very likely to be classified as mixed or unknown by MODIS
- Within this temperature range, ice, water, and true mixed phase clouds are possible
- "Mid-level" clouds frequently fall in this range
- AIRS phase classification shows promise due to high spectral resolution
- Nasiri and Kahn JAMC paper currently in review

MODIS/AIRS/CALIPSO Cloud phase case study July 02 2007 ~0550 UTC

MODIS false color

Lidar Depolarization compared to MODIS phase

Is AIRS the Right Instrument for Phase?

- Simulations show a 0.5 K phase separation
- Can channel combinations increase phase separation?
- What about scene variability within large AIRS footprint?
- What about true mixed-phase clouds?

Plans include testing various channel combinations for a wide variety of scenes and comparing with CALIPSO data.

Thank you